skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films

Journal Article · · Nano Letters
 [1];  [2];  [1];  [3];  [1];  [1];  [1];  [1];  [4];  [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)

Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump–probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC02-76SF00515
OSTI ID:
1183694
Report Number(s):
SLAC-PUB-16301
Journal Information:
Nano Letters, Vol. 15, Issue 6; ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English