skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Least-Squares Transport Equation Compatible with Voids

Journal Article · · Journal of Computational and Theoretical Transport
 [1];  [1];  [1];  [1];  [2]
  1. Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering
  2. Idaho National Lab. (INL), Idaho Falls, ID (United States)

Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC07-05ID14517
OSTI ID:
1177636
Report Number(s):
INL/JOU-15-34854; TRN: US1500077
Journal Information:
Journal of Computational and Theoretical Transport, Vol. 43, Issue 1-7; ISSN 2332-4309
Publisher:
Taylor and Francis
Country of Publication:
United States
Language:
English