skip to main content

SciTech ConnectSciTech Connect

Title: Mechanical and Electronic Properties of A1-xBxHy (A and B =Ti, Zr, Hf) Hydride Alloys: A First-principles Study

Using ab initio calculations, we investigated the mechanical and electronic properties of Ti1-xHfxHy, Ti1-xZrxHy and Zr1-xHfxTHy (x=0, 0.25, 0.5, 0.75, 1; y=1.5, 1.75, 2). The calculated results in binary hydrides show that the β-phase MH1.5[100] (M=Ti, Zr, Hf) are more stable than other possible structures. At the Fermi level, the density of states for metal d state increases with increasing the H concentration in MHy (y ranged from 1.5 to 2), which leads to the instability of their fcc structures and induces the tetragonal distortion. Ti0.75Hf0.25H1.5 and Zr0.25Hf0.75H1.5 exhibit the highest mechanical stability, while Ti0.25Zr0.75H1.5 has the lowest mechanical stability among the corresponding ternary systems considered. Moreover, the systems studied in the present work are all anisotropic and show a ductile behavior. The tetragonal distortion in Ti1-xHfxH1.5, Ti1-xZrxH1.5 and Zr1-xHfxH1.5 is not observed, retaining their fcc structures. The electronic structure of A1-xBxHy (A and B =Ti, Hf, Zr) exhibits metallic character.
; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Alloys and Compounds, 581:404-412
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
Metal hydrides; Ab initio calculation; Mechanical properties; Electronic properties; Hydride alloys