skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving Wind Turbine Drivetrain Reliability Using a Combined Experimental, Computational, and Analytical Approach

Conference ·

Nontorque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling, and experimental data to evaluate a unique drivetrain design that minimizes the effects of nontorque loads on gearbox reliability: the Pure Torque(R) drivetrain developed by Alstom. The drivetrain has a hub-support configuration that transmits nontorque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces, and the resulting drivetrain loads. Main shaft bending loads are orders of magnitude lower than the rated torque and are hardly affected by wind conditions and turbine operations.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
CRADA
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1176729
Resource Relation:
Conference: Presented at the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2014), 17-20 August 2014, Buffalo, New York
Country of Publication:
United States
Language:
English