skip to main content

SciTech ConnectSciTech Connect

Title: Stochastic Inversion of InSAR Data to Assess the Probability of Pressure Penetration into the Lower Caprock at In Salah

Stochastic inversions of InSAR data were carried out to assess the probability that pressure perturbations resulting from CO2 injection into well KB-502 at In Salah penetrated into the lower caprock seal above the reservoir. Inversions of synthetic data were employed to evaluate the factors that affect the vertical resolution of overpressure distributions, and to assess the impact of various sources of uncertainty in prior constraints on inverse solutions. These include alternative pressure-driven deformation modes within reservoir and caprock, the geometry of a sub-vertical fracture zone in the caprock identified in previous studies, and imperfect estimates of the rock mechanical properties. Inversions of field data indicate that there is a high probability that a pressure perturbation during the first phase of injection extended upwards along the fracture zone ~ 150 m above the reservoir, and less than 50% probability that it reached the Hot Shale unit at 1500 m depth. Within the uncertainty bounds considered, it was concluded that it is very unlikely that the pressure perturbation approached within 150 m of the top of the lower caprock at the Hercynian Unconformity. The results are consistent with previous deterministic inversion and forward modeling studies.
 [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1750-5836
Grant/Contract Number:
Accepted Manuscript
Journal Name:
International Journal of Greenhouse Gas Control
Additional Journal Information:
Journal Volume: 27; Journal ID: ISSN 1750-5836
Research Org:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org:
Country of Publication:
United States