skip to main content

SciTech ConnectSciTech Connect

Title: Technetium and Iodine Getters to Improve Cast Stone Performance

To determine the effectiveness of the various getter materials prior to their solidification in Cast Stone, a series of batch sorption experiments was performed at Pacific Northwest National Laboratory. To quantify the effectiveness of the removal of Tc(VII) and I(I) from solution by getters, the distribution coefficient, Kd (mL/g), was calculated. Testing involved placing getter material in contact with spiked waste solutions at a 1:100 solid-to-solution ratio for periods up to 45 days with periodic solution sampling. One Tc getter was also tested at a 1:10 solid-to-solution ratio. Two different solution media, 18.2 MΩ deionized water (DI H2O) and a 7.8 M Na LAW simulant, were used in the batch sorption tests. Each test was conducted at room temperature in an anoxic chamber containing N2 with a small amount of H2 (0.7%) to maintain anoxic conditions. Each getter-solution combination was run in duplicate. Three Tc- and I-doping concentrations were used separately in aliquots of both the 18.2 MΩ DI H2O and a 7.8 M Na LAW waste simulant. The 1× concentration was developed based on Hanford Tank Waste Operations Simulator (HTWOS) model runs to support the River Protection Project System Plan Revision 6. The other two concentrations were 5× andmore » 10× of the HTWOS values. The Tc and I tests were run separately (i.e., the solutions did not contain both solutes). Sampling of the solid-solution mixtures occurred nominally after 0.2, 1, 3, 6, 9, 12, 15 days and ~35 to 45 days. Seven getter materials were tested for Tc and five materials were tested for I. The seven Tc getters were blast furnace slag 1 (BFS1) (northwest source), BFS2 (southeast source), Sn(II)-treated apatite, Sn(II) chloride, nano tin phosphate, KMS (a potassium-metal-sulfide), and tin hydroxapatite. The five iodine getters were layered bismuth hydroxide (LBH), argentite mineral, synthetic argentite, silver-treated carbon, and silver-treated zeolite. The Tc Kd values measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
PNNL-23282 Rev. 1
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States