skip to main content

SciTech ConnectSciTech Connect

Title: Chemical Routes to Colloidal Chalcogenide Nanosheets

This project sought to develop new low-temperature synthetic pathways to intermetallic and chalcogenide nanostructures and powders, with an emphasis on systems that are relevant to advancing the synthesis, processing, and discovery of superconducting materials. The primary synthetic routes involved solution chemistry methods, and several fundamental synthetic challenges that underpinned the formation of these materials were identified and investigated. Methods for incorporating early transition metals and post transition metals into nanoscale and bulk crystals using low-temperature solution chemistry methods were developed and studied, leading to colloidal nanocrystals of elemental indium, manganese, and germanium, as well as nanocrystalline and bulk intermetallic compounds containing germanium, gallium, tin, indium, zinc, bismuth, and lithium. New chemical tools were developed to help target desired phases in complex binary intermetallic and metal chalcogenide systems that contain multiple stable phases, including direct synthesis methods and chemical routes that permit post-synthetic modification. Several phases that are metastable in bulk systems were targeted, synthesized, and characterized as nanocrystalline solids and bulk powders, including the L12-type intermetallic compounds Au3Fe, Au3Ni, and Au3Co, as well as wurtzite-type MnSe. Methods for accessing crystalline metal borides and carbides using direct solution chemistry methods were also developed, with an emphasis on Ni3B and Ni3C, whichmore » revealed useful correlations of composition and magnetic properties. Methods for scale-up and nanoparticle purification were explored, providing access to centimeter-scale pressed pellets of polyol-synthesized nanopowders and a bacteriophage-mediated method for separating impure nanoparticle mixtures into their components. Several advances were made in the synthesis of iron selenide and related superconducting materials, including the production of colloidal FeSe nanosheets and a post-synthetic method for selectively leaching excess selenium from chalcogen-rich Fe-Se samples to precisely target the desired superconducting FeSe polymorph. The insights into FeSe nanosheet formation were applied to other metal chalcogenide systems, including SnSe, SnS, GeSe, and GeS, which led to advances in the synthesis and characterization of 0D, 1D, 2D, and 3D metal chalcogenide nanostructures, including morphology-dependent crystal structures in the SnS system.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Pennsylvania State University, University Park, PA
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States