skip to main content

SciTech ConnectSciTech Connect

Title: Hypothesis to Explain the Size Effect Observed in APO-BMI Compression Tests

In 2013 compression tests were performed on cylindrical specimens of carbon-microballoon-APOBMI syntactic foam machined to different lengths (0.25, 0.5, and 2.8 inches1) (Kingston, 2013). In 2014 similar tests were performed on glass-microballoon-APO-BMI of different lengths (~0.15”, ~0.32”, and ~0.57”). In all these tests it was observed that, when strains were calculated from the platen displacement (corrected for machine compliance), the apparent Young’s modulus of the material decreased with specimen size, as shown in Table 1. The reason for this size effect was speculated to be a layer of damage on or near the top and bottom machined surfaces of the specimens (Kingston, Schembri, & Siranosian, 2014). This report examines that hypothesis in further detail.
 [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
36 MATERIALS SCIENCE syntactic foam; damage; stiffness; modulus