skip to main content

SciTech ConnectSciTech Connect

Title: Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) Pacific–North American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the eastern US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is thatmore » CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also studied in (CMIP5) climate model simulations. Although the climate models considered are able to represent the overall behavior of ETEs, the frequency of WWs (CAOs) is too high (low) in many models. While all models qualitatively replicate the overall structure of the PNA pattern, a small minority of models fails to properly simulate the NAO pattern. Model shortcomings in representing the NAO and PNA patterns have important consequences for simulating associated regional variability in surface air temperature and storm track behavior. The influence of PCMs on ETEs is underestimated in most CMIP5 models. In particular, none of the models are able to accurately simulate observed linkages between ETEs and the PDO, due to a gross misrepresentation of the PDO pattern in most models. Our results indicate that predictions of future CAO and WW behavior are currently limited by the ability of climate models to accurately represent PCM characteristics. Our study also considers the behavior of PCMs known as annular modes. It is determined that north-south movements in the stratospheric jet stream (related to the Polar Annular Mode) result in long-lasting impacts upon surface weather conditions including regional air temperature anomalies. The structure and dynamics of the stratospheric northern annular mode (or SNAM, related to changes in the strength of the stratospheric jet stream) was studied in CMIP5 models. In models with poorly-resolved stratospheres, the amplitude of SNAM at stratospheric altitudes is typically too weak, consistent with weaker stratospheric jet variability. However, this distinction does not carry over to the associated tropospheric signature of SNAM. A regional analysis illustrates that most CMIP5 models (regardless of whether the stratosphere is well-resolved) have anomalously weak and eastward shifted (compared to observed SNAM events) storm track and sea level pressure anomaly patterns during SNAM events. Analyses of stratosphere–troposphere coupling reveal that large-scale wave activity in the stratosphere is anomalously weak in CMIP5 models having poorly-resolved stratospheres, due to correspondingly weak upward propagation of wave activity from the troposphere. This suggests that such models have anomalously weak stratosphere-troposphere coupling in association with SNAM events. Paradoxically, however, there is little apparent impact upon the attendant tropospheric variability.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Georgia Tech Research Corporation
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States