skip to main content

SciTech ConnectSciTech Connect

Title: Investigating the Metastability of Clathrate Hydrates for Energy Storage

Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery ofmore » the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate hydrate systems are pivotal in the fundamental understanding of crystalline clathrate hydrates and the discovery of new clathrate hydrate properties and novel materials for a broad spectrum of energy applications, including: energy storage (hydrogen, natural gas); carbon dioxide sequestration; controlling hydrate formation in oil/gas transportation in subsea pipelines. The Project has also enabled the training of undergraduate, graduate and postdoctoral students in computational methods, molecular spectroscopy and diffraction, and measurement methods at extreme conditions of high pressure and low temperature.« less
  1. Colorado School of Mines
Publication Date:
OSTI Identifier:
Report Number(s):
Final Report
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Colorado School of Mines
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Orgs:
Colorado School of Mines
Country of Publication:
United States
25 ENERGY STORAGE Clathrate hydrate, nucleation, growth, synthesis