skip to main content

SciTech ConnectSciTech Connect

Title: Aluminum Target Dissolution in Support of the Pu-238 Program

Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Oak Ridge National Laboratory (ORNL)
Sponsoring Org:
ORNL work for others
Country of Publication:
United States
NESDPS Office of Nuclear Energy Space and Defense Power Systems; aluminum alloy 6061; aluminum dissolution in caustic; Pu-238