skip to main content

SciTech ConnectSciTech Connect

Title: Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s-1 were found, similar to the parent complex (~8 s-1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observations are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1434-1948; KC0302010; KC0302010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: European Journal of Inorganic Chemistry; Journal Volume: 2013; Journal Issue: 30
ChemPubSoc Europe
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY formate; oxidation; nickel; peptide catalysts; electrocatalysis; outer coordination sphere; biocatalysis; bioinorganic chemistry