skip to main content

SciTech ConnectSciTech Connect

Title: A Systematic Study on the Mesomorphic Behavior of Asymmetrical 1-Alkyl-3-dodecylimidazolium Bromides

To determine the essential parameters for mesophase formation in imidazolium-based ionic liquids (ILs), a library of 1-alkyl-3-dodecylimidazolium bromides was synthesized, abbreviated as CnC12, where 0 ≤ n ≤ 13, as the general notion is that a dodecyl side chain would guarantee the formation of an ionic liquid crystal (ILC). All salts were fully characterized by NMR spectroscopy and mass spectrometry. Their thermal properties were recorded, and mesophase formation was assessed. An odd–even effect is observed for 5 ≤ n ≤ 10 in the temperatures of melting transitions. While the majority of this series, as expected, formed mesophases, surprisingly compounds C2C12 and C6C12 could not be classified as ILCs, the latter being a room temperature IL, while C2C12 is a crystalline solid with melting point at 37 °C. The single crystal structure of compound 1-ethyl-3-dodecylimidazolium bromide (C2C12) was successfully obtained. Remarkably, the arrangement of imidazolium cores in the structure is very complicated due to multiple nonclassical hydrogen bonds between bromide anions and imidazolium head groups. In this arrangement, neighboring imidazolium rings are forced by hydrogen bonds to form a “face-to-face” conformation. This seems to be responsible for the elimination of a mesophase. To conclude, the general view of a dodecyl chainmore » being a functional group to generate a mesophase is not entirely valid.« less
; ;
Publication Date:
OSTI Identifier:
Report Number(s):
IS-J 8345
Journal ID: ISSN 1528-7483
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Crystal Growth and Design; Journal Volume: 14; Journal Issue: 4
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE Physical Organic Chemistry