skip to main content

SciTech ConnectSciTech Connect

Title: Application of Hybrid Geo-Spatially Granular Fragility Curves to Improve Power Outage Predictions

Fragility curves depict the relationship between a weather variable (wind speed, gust speed, ice accumulation, precipitation rate) and the observed outages for a targeted infrastructure network. This paper describes an empirical study of the county by county distribution of power outages and one minute weather variables during Hurricane Irene with the objective of comparing 1) as built fragility curves (statistical approach) to engineering as designed (bottom up) fragility curves for skill in forecasting outages during future hurricanes; 2) county specific fragility curves to find examples of significant deviation from average behavior; and 3) the engineering practices of outlier counties to suggest future engineering studies of robustness. Outages in more than 90% of the impacted counties could be anticipated through an average or generic fragility curve. The remaining counties could be identified and handled as exceptions through geographic data sets. The counties with increased or decreased robustness were characterized by terrain more or less susceptible to persistent flooding in areas where above ground poles located their foundations. Land use characteristics of the area served by the power distribution system can suggest trends in the as built power grid vulnerabilities to extreme weather events that would be subjects for site specific studies.
 [1] ;  [1] ;  [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Geography and Natural Disasters; Journal Volume: 4; Journal Issue: 2
Research Org:
Oak Ridge National Laboratory (ORNL)
Sponsoring Org:
ORNL LDRD Director's R&D
Country of Publication:
United States
Power outage; infrastructure vulnerability; extreme weather; Hurricane Irene; classification of impacted areas