skip to main content

SciTech ConnectSciTech Connect

Title: Irradiated Microsphere Gamma Analyzer for Examination of Particle Fuel

Fabrication of the first series of fuel compacts for the current US tristructural isotropic (TRISO) coated particle fuel development and qualification effort was completed at Oak Ridge National Laboratory (ORNL) in 2006. In November of 2009, after almost 3 years and 620 effective full power days of irradiation in the Advanced Test Reactor at Idaho National Laboratory (INL), the first Advanced Gas Reactor irradiation test (AGR-1) was concluded. Compacts were irradiated at a calculated timeaveraged, volume-averaged temperature of 955–1136°C to a burnup ranging from 11.2–19.5% fissions per initial metal atom and a total fast fluence of 2.2–4.3·1025 n/m2 [1]. No indication of fission product release from TRISO coating failure was observed during the irradiation test, based on real-time monitoring of gaseous fission products. Post-irradiation examination (PIE) and hightemperature safety testing of the compacts has been in progress at both ORNL and INL since 2010, and have revealed small releases of a limited subset of fission products (such as silver, cesium, and europium). Past experience has shown that some elements can be released from TRISO particles when a defect forms in the SiC layer, even when one or more pyrocarbon layers remain intact and retain the gaseous fission products. Some volatilemore » elements can also be released by diffusion through an intact SiC layer during safety testing if temperatures are high enough and the duration is long enough. In order to understand and quantify the release of certain radioactive fission products, it is sometimes necessary to individually examine each of the more than 4000 coated particles in a given compact. The Advanced Irradiated Microsphere Gamma Analyzer (Advanced- IMGA) was designed to perform this task in a remote hot cell environment. This paper describes the Advanced- IMGA equipment and examination process and gives results for a typical full compact evaluation.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Transactions of the American Nuclear Society,; Journal Volume: 110
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
Country of Publication:
United States
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS Irradiated Microsphere Gamma Analyzer, Partiicle f