skip to main content

SciTech ConnectSciTech Connect

Title: Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter

We study the variation of the spectrum of the Fermi Bubbles with Galactic latitude. Far from the Galactic plane (|b| > 30 degrees), the observed gamma-ray emission is nearly invariant with latitude, and is consistent with arising from inverse Compton scattering of the interstellar radiation field by cosmic-ray electrons with an approximately power-law spectrum. The same electrons in the presence of microgauss-scale magnetic fields can also generate the the observed microwave "haze". At lower latitudes (b < 20 degrees), in contrast, the spectrum of the emission correlated with the Bubbles possesses a pronounced spectral feature peaking at 1-4 GeV (in E^2 dN/dE) which cannot be generated by any realistic spectrum of electrons. Instead, we conclude that a second (non-inverse-Compton) emission mechanism must be responsible for the bulk of the low-energy, low-latitude emission. This second component is spectrally similar to the excess GeV emission previously reported from the Galactic Center (GC), and also appears spatially consistent with a luminosity per volume falling approximately as r^-2.4, where r is the distance from the GC. We argue that the spectral feature visible in the low-latitude Bubbles is the extended counterpart of the GC excess, now detected out to at least 2-3 kpc frommore » the GC. The spectrum and angular distribution of the signal is consistent with that predicted from ~10 GeV dark matter particles annihilating to leptons, or from ~50 GeV dark matter particles annihilating to quarks, following a distribution similar to the canonical Navarro-Frenk-White (NFW) profile. We also consider millisecond pulsars as a possible astrophysical explanation for the signal, as observed millisecond pulsars possess a spectral cutoff at approximately the required energy. Any such scenario would require a large population of unresolved millisecond pulsars extending at least 2-3 kpc from the GC.« less
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 2212-6864; arXiv eprint number arXiv:1302.6589
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of the Dark Universe; Journal Volume: 2; Journal Issue: 3
Research Org:
Fermi National Accelerator Laboratory (FNAL), Batavia, IL
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States