Title: CPsuperH2.3: an Updated Tool for Phenomenology in the MSSM with Explicit CP Violation

We describe the Fortran code CPsuperH2.3, which incorporates the following updates compared with its predecessor CPsuperH2.0. It implements improved calculations of the Higgs-boson masses and mixing including stau contributions and finite threshold effects on the tau-lepton Yukawa coupling. It incorporates the LEP limits on the processes e^+e^-->H_iZ,H_iH_j and the CMS limits on H_i->@t@?@t obtained from 4.6 fb^-^1 of data at a center-of-mass energy of 7 TeV. It also includes the decay mode H_i->Z@c and the Schiff-moment contributions to the electric dipole moments of Mercury and Radium 225, with several calculational options for the case of Mercury. These additions make CPsuperH2.3 a suitable tool for analyzing possible CP-violating effects in the MSSM in the era of the LHC and a new generation of EDM experiments. Program summary: Program title: CPsuperH2.3 Catalogue identifier: ADSR_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSR_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24058 No. of bytes in distributed program, including test data, etc.: 158721 Distribution format: tar.gz Programming language: Fortran77. Computer: PC running under Linux and computers in Unix environment. Operating system: Linux. RAM: 32 MB Classification: 11.1. Does themore » new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSR_v2_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)312 Nature of problem: The calculations of mass spectrum, decay widths and branching ratios of the neutral and charged Higgs bosons in the Minimal Supersymmetric Standard Model with explicit CP violation have been improved. The program is based on renormalization-group-improved diagrammatic calculations that include dominant higher-order logarithmic and threshold corrections, b-quark and @t-lepton Yukawa-coupling resummation effects and improved treatment of Higgs-boson pole-mass shifts. The couplings of the Higgs bosons to the Standard Model gauge bosons and fermions, to their supersymmetric partners and all the trilinear and quartic Higgs-boson self-couplings are also calculated. Also included are a full treatment of the 4x4 (2x2) neutral (charged) Higgs propagator matrix together with the center-of-mass dependent Higgs-boson couplings to gluons and photons, and an integrated treatment of several B-meson observables. The new implementations include the EDMs of Thallium, neutron, Mercury, Deuteron, Radium, and muon, as well as the anomalous magnetic moment of muon, (g_@m-2), the top-quark decays, improved calculations of the Higgs-boson masses and mixing including stau contributions, the LEP limits, and the CMS limits on H_i->@t@t@?. It also implements the decay mode H_i->Z@c and includes the corresponding Standard Model branching ratios of the three neutral Higgs bosons in the array GAMBRN(IM,IWB = 2,IH). Solution method: One-dimensional numerical integration for several Higgs-decay modes and EDMs, iterative treatment of the threshold corrections and Higgs-boson pole masses, and the numerical diagonalization of the neutralino mass matrix. Reasons for new version: Mainly to provide the full calculations of the EDMs of Thallium, neutron, Mercury, Deuteron, Radium, and muon as well as (g_@m-2), improved calculations of the Higgs-boson masses and mixing including stau contributions, the LEP limits, the CMS limits on H_i->@t@t@?, the top-quark decays, H_i->Z@c decay, and the corresponding Standard Model branching ratios of the three neutral Higgs bosons. Summary of revisions: Full calculations of the EDMs of Thallium, neutron, Mercury, Deuteron, Radium, and muon as well as (g_@m-2). Improved treatment of Higgs-boson masses and mixing including stau contributions. The LEP limits. The CMS limits on H_i->@t@t@?. The top-quark decays. The H_i->Z@c decay. The corresponding Standard Model branching ratios of the three neutral Higgs bosons. Running time: Less than 1.0 s.« less