skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains

Journal Article · · ACS Sustainable Chemistry & Engineering
DOI:https://doi.org/10.1021/sc500189p· OSTI ID:1149395

Lignin is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fiber, monolithic structures or powders that could be used directly in the production of anodes for lithium-ion batteries. In this work, we report processing parameters relevant for the conversion of lignin precursors into electrochemically active carbon fibers, the impact of lignin precursor modification on melt processing and the microstructure of the final carbon material. The conversion process encompasses melt spinning of the lignin precursor, oxidative stabilization and a low temperature carbonization step in a nitrogen/hydrogen atmosphere. To assess electrochemical performance, we determined resistivities of individual carbon fiber samples and characterized the microstructure by scanning electron microscopy and neutron diffraction. The chemical modification and subsequent thermomechanical processing methods reported here are effective for conversion into carbon fibers while preserving the macromolecular backbone structure of lignin. Modification of softwood lignin produced functionalities and rheological properties that more closely resemble hardwood lignin thereby enabling the melt processing of softwood lignin in oxidative atmospheres (air). Structural characterization of the carbonized fibers reveals nanoscale graphitic domains that are linked to enhanced electrochemical performance.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Organization:
USDOE Laboratory Directed Research and Development (LDRD) Program
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1149395
Journal Information:
ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 8; ISSN 2168--0485
Country of Publication:
United States
Language:
English