skip to main content

SciTech ConnectSciTech Connect

Title: Aging of Iodine-Loaded Silver Mordenite in NO2

Used nuclear fuel facilities need to control and minimize radioactive emissions. Off-gas systems are designed to remove radioactive contaminants, such as 85Kr, 14C, 3H, and 129I. In an off-gas system, any capture material will be exposed to a gas stream for months at a time. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents comprising the dissolver off-gas stream in a nuclear fuel reprocessing plant. For this reason, it is important to evaluate the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration is reduced silver mordenite (Ag0Z), which is recognized for its efficient iodine capture properties. Iodine is immobilized on Ag0Z as AgI, a solid with low volatility (m.p. ≥ 500°C). The aim of this study was to determine whether extended aging at elevated temperature in a nominally 2% NO2 environment would result in a loss of immobilized iodine from this material due to either physical or chemical changes that might occur during aging. Charges of iodine-loaded reduced silver mordenite (I2-Ag0Z) were exposed to a 2% NO2 environment for 1, 2, 3, and 4 months at 150°C, then analyzed for iodine losses Themore » aging study was completed successfully. The material did not visibly change color or form. The results demonstrate that no significant iodine loss was observed over the course of 4 months of 2% NO2 aging of I2-Ag0Z at elevated temperature within the margin of error and the variability (~10%) in the loading along the beds. This provides assurance that iodine will remain immobilized on Ag0Z during extended online use in an off-gas capture treatment system. Future tests should expose I2-Ag0Z to progressively more complex feed gases in an effort to accurately replicate the conditions expected in a reprocessing facility.« less
 [1] ;  [1] ;  [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
Report Number(s):
R&D Project: AF5805010; FCRD-SWF-2014-000465
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE), Fuel Cycle Technologies (NE-5)
Country of Publication:
United States
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS aging, silver mordenite, iodine