skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A stochastic approach to quantifying the blur with uncertainty estimation for high-energy X-ray imaging systems

Journal Article · · Inverse Problems in Science and Engineering
 [1];  [1];  [1];  [1];  [2]
  1. National Security Technologies, LLC, North Las Vegas, NV (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

One of the primary causes of blur in a high-energy X-ray imaging system is the shape and extent of the radiation source, or ‘spot’. It is important to be able to quantify the size of the spot as it provides a lower bound on the recoverable resolution for a radiograph, and penumbral imaging methods – which involve the analysis of blur caused by a structured aperture – can be used to obtain the spot’s spatial profile. We present a Bayesian approach for estimating the spot shape that, unlike variational methods, is robust to the initial choice of parameters. The posterior is obtained from a normal likelihood, which was constructed from a weighted least squares approximation to a Poisson noise model, and prior assumptions that enforce both smoothness and non-negativity constraints. A Markov chain Monte Carlo algorithm is used to obtain samples from the target posterior, and the reconstruction and uncertainty estimates are the computed mean and variance of the samples, respectively. Lastly, synthetic data-sets are used to demonstrate accurate reconstruction, while real data taken with high-energy X-ray imaging systems are used to demonstrate applicability and feasibility.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC04-94AL85000
OSTI ID:
1142174
Report Number(s):
SAND-2014-2872J; 507350
Journal Information:
Inverse Problems in Science and Engineering, Vol. 24, Issue 3; ISSN 1741-5977
Publisher:
Taylor & FrancisCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Similar Records

Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
Thesis/Dissertation · Fri Apr 25 00:00:00 EDT 2014 · OSTI ID:1142174

Sampling-based Uncertainty Quantification in Deconvolution of X-ray Radiographs
Journal Article · Sat Nov 01 00:00:00 EDT 2014 · Journal of Computational and Applied Mathematics · OSTI ID:1142174

Bayesian Spatially Varying Multi-Regularization Image Deblurring
Journal Article · Wed Dec 01 00:00:00 EST 2021 · Inverse Problems in Science and Engineering - https://www.tandfonline.com/journals/gipe20 · OSTI ID:1142174