skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ntermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges

Journal Article · · Journal of Geophysical Research
OSTI ID:1136820
 [1];  [1];  [2];  [3]
  1. ORNL
  2. Georgia Institute of Technology, Atlanta
  3. University of North Dakota, Grand Forks

In this study, an atmospheric river (AR) detection algorithm is developed to investigate the downstream modulation of the eastern North Pacific ARs by another weather extreme, known as the East Asian cold surge (EACS), in both reanalysis data and high-resolution global model simulations. It is shown that following the peak of an EACS, atmospheric disturbances of intermediate frequency (IF; 10 30 day period) are excited downstream. This leads to the formation of a persistent cyclonic circulation anomaly over the eastern North Pacific that dramatically enhances the AR occurrence probability and the surface precipitation over the western U.S. between 30 N and 50 N. A diagnosis of the local geopotential height tendency further confirms the essential role of IF disturbances in establishing the observed persistent anomaly. This downstream modulation effect is then examined in the two simulations of the National Center for Atmospheric Research Community Climate System Model version 4 with different horizontal resolutions (T85 and T341) for the same period (1979 2005). The connection between EACS and AR is much better captured by the T341 version of the model, mainly due to a better representation of the scale interaction and the characteristics of IF atmospheric disturbances in the higher-resolution model. The findings here suggest that faithful representations of scale interaction in a global model are critical for modeling and predicting the occurrences of hydrological extremes in the western U.S. and for understanding their potential future changes.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1136820
Journal Information:
Journal of Geophysical Research, Vol. 119, Issue 7
Country of Publication:
United States
Language:
English