skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal stability of MnBi magnetic materials

Journal Article · · Journal of Physics. Condensed Matter
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [3];  [3];  [3];  [3];  [4];  [5];  [6];  [5];  [7];  [8] more »;  [8] « less
  1. Pacific Northwest National Laboratory
  2. Environmental Molecular Sciences Laboratory
  3. Ames Laboratory
  4. Electron Energy Corporation
  5. University of Maryland
  6. National Institute of Standards and Technology
  7. United Technologies Research Center
  8. University of Texas

MnBi has attracted much attention in recent years due to its potential as a rare-earth-free permanent magnet material. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase material for exchange coupling nanocomposite magnets. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn reacts readily with oxygen. MnO formation is irreversible and harmful to magnet performance. In this paper, we report our efforts toward developing MnBi permanent magnets. To date, high purity MnBi (>90%) can be routinely produced in large quantities. The produced powder exhibits 74:6 emu g1 saturation magnetization at room temperature with 9 T applied field. After proper alignment, the maximum energy product (BH) max of the powder reached 11.9 MGOe, and that of the sintered bulk magnet reached 7.8 MGOe at room temperature. A comprehensive study of thermal stability shows that MnBi powder is stable up to 473 K in air.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
DOE Contract Number:
DE-AC02-07CH11358
OSTI ID:
1134714
Report Number(s):
IS-J 8245
Journal Information:
Journal of Physics. Condensed Matter, Vol. 26, Issue 6; ISSN 0953-8984
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English

Similar Records

Thermal Stability of MnBi Magnetic Materials
Journal Article · Wed Jan 01 00:00:00 EST 2014 · Journal of Physics. Condensed Matter, 26(6):Article No. 064212 · OSTI ID:1134714

Optimizing composition in MnBi permanent magnet alloys
Journal Article · Mon Oct 07 00:00:00 EDT 2019 · Acta Materialia · OSTI ID:1134714

Effect of Composition and Heat Treatment on MnBi Magnetic Materials
Journal Article · Sun Aug 17 00:00:00 EDT 2014 · Acta Materialia, 79:374-381 · OSTI ID:1134714