skip to main content

SciTech ConnectSciTech Connect

Title: Investigation of oxygen point defects in cubic ZrO2 by density functional theory

The energetics of formation and migration of the oxygen vacancy and interstitial in cubic ZrO2 are investigated by density functional theory calculations. In an O-rich environment, the negatively charged oxygen interstitial is the most dominant defect whereas, the positively charged oxygen vacancy is the most dominant defect under O-poor conditions. Oxygen interstitial migration occurs by the interstitialcy and the direct interstitial mechanisms, with calculated migration energy barriers of 2.94 eV and 2.15 eV, respectively. For the oxygen vacancy, diffusion is preferred along the <100> direction, and the calculated energy barriers are 0.26 eV for , 0.27 eV for and 0.54 eV for . These results indicate that oxygen diffusivity is higher through the vacancy-migration mechanism.
 [1] ;  [2] ;  [1] ;  [1] ;  [1]
  1. ORNL
  2. University of Tennessee, Knoxville (UTK)
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Computational Materials Science; Journal Volume: 92
Research Org:
Oak Ridge National Laboratory (ORNL)
Sponsoring Org:
SC USDOE - Office of Science (SC)
Country of Publication:
United States