skip to main content

SciTech ConnectSciTech Connect

Title: A Structure-Based Distance Metric for High-Dimensional Space Exploration with Multi-Dimensional Scaling

Although the Euclidean distance does well in measuring data distances within high-dimensional clusters, it does poorly when it comes to gauging inter-cluster distances. This significantly impacts the quality of global, low-dimensional space embedding procedures such as the popular multi-dimensional scaling (MDS) where one can often observe non-intuitive layouts. We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its structure and suggest a metric that captures this structure directly in high-dimensional space. This allows us to better gauge the distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of existing high-dimensional structure similarities. Our MDS plots also exhibit similar visual relationships as the method of parallel coordinates which is often used alongside to visualize the high-dimensional data in raw form. We then cast our metric into a bi-scale framework which distinguishes far-distances from near-distances. The coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while the finer scale employs the appropriate Euclidean distance.
; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
42299; KC0302020
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: IEEE Transactions on Visualization and Computer Graphics, 20(3):351-364
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Information Visualization; Multivariate Visualization; Clustering; High-Dimensional Data; Visual Analytics; Environmental Molecular Sciences Laboratory