skip to main content

SciTech ConnectSciTech Connect

Title: Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling ofmore » such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism Computational Sciences, Inc. and Advanced Energy Systems Inc. joined efforts to develop new physics and numerical models for LSP in several key areas to enhance the ability of LSP to model high energy density plasmas (HEDP). This final report details those efforts. Areas addressed in this research effort include: adding radiation transport to LSP, first in 2D and then fully 3D, extending the EMHD model to 3D, implementing more advanced radiation and electrode plasma boundary conditions, and installing more efficient implicit numerical algorithms to speed complex 2-D and 3-D computations. The new capabilities allow modeling of the dominant processes in high energy density plasmas, and further assist the development and optimization of plasma jet accelerators, with particular attention to MHD instabilities and plasma/wall interaction (based on physical models for ion drag friction and ablation/erosion of the electrodes). In the first funding cycle we implemented a solver for the radiation diffusion equation. To solve this equation in 2-D, we used finite-differencing and applied the parallelized sparse-matrix solvers in the PETSc library (Argonne National Laboratory) to the resulting system of equations. A database of the necessary coefficients for materials of interest was assembled using the PROPACEOS and ATBASE codes from Prism. The model was benchmarked against Prism's 1-D radiation hydrodynamics code HELIOS, and against experimental data obtained from HyperV's separately funded plasma jet accelerator development program. Work in the second funding cycle focused on extending the radiation diffusion model to full 3-D, continued development of the EMHD model, optimizing the direct-implicit model to speed up calculations, add in multiply ionized atoms, and improved the way boundary conditions are handled in LSP. These new LSP capabilities were then used, along with analytic calculations and Mach2 runs, to investigate plasma jet merging, plasma detachment and transport, restrike and advanced jet accelerator design. In addition, a strong linkage to diagnostic measurements was made by modeling plasma jet experiments on PLX to support benchmarking of the code. A large number of upgrades and improvements advancing hybrid PIC algorithms were implemented in LSP during the second funding cycle. These include development of fully 3D radiation transport algorithms, new boundary conditions for plasma-electrode interactions, and a charge conserving equation of state that permits multiply ionized high-Z ions. The final funding cycle focused on 1) mitigating the effects of a slow-growing grid instability which is most pronounced in plasma jet frame expansion problems using the two-fluid Eulerian remap algorithm, 2) extension of the Eulerian Smoothing Algorithm to allow EOS/Radiation modeling, 3) simulations of collisionless shocks formed by jet merging, 4) simulations of merging jets using high-Z gases, 5) generation of PROPACEOS EOS/Opacity databases, 6) simulations of plasma jet transport experiments, 7) simulations of plasma jet penetration through transverse magnetic fields, and 8) GPU PIC code development The tools developed during this project are applicable not only to the study of plasma jets, but also to a wide variety of HEDP plasmas of interest to DOE, including plasmas created in short-pulse laser experiments performed to study fast ignition concepts for inertial confinement fusion.« less
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [2] ;  [2] ;  [2] ;  [2] ;  [3] ;  [3] ;  [3] ;  [6] ;  [6] ;  [1] ;  [1]
  1. HyperV Technologies Corp.
  2. Voss Scientific, LLC
  3. FAR-TECH, Inc.
  4. Prism Computational Sciences Inc.
  5. Advanced Energy Systems, Inc.
  6. Prism Computational Sciences, Inc.
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
HyperV Technologies Corp.
Sponsoring Org:
USDOE; USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY PIC; fusion; simulation; plasma liner; magnetized target fusion; magneto-inertial fusion; plasma jet; plasma liner; LSP; gpuPIC; PLX