skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A method for direct, semi-quantitative analysis of gas phase samples using gas chromatography-inductively coupled plasma-mass spectrometry

Journal Article · · Spectrochimica Acta. Part B, Atomic Spectroscopy

A new and complete GC–ICP-MS method is described for direct analysis of trace metals in a gas phase process stream. The proposed method is derived from standard analytical procedures developed for ICP-MS, which are regularly exercised in standard ICP-MS laboratories. In order to implement the method, a series of empirical factors were generated to calibrate detector response with respect to a known concentration of an internal standard analyte. Calibrated responses are ultimately used to determine the concentration of metal analytes in a gas stream using a semi-quantitative algorithm. The method was verified using a traditional gas injection from a GC sampling valve and a standard gas mixture containing either a 1 ppm Xe + Kr mix with helium balance or 100 ppm Xe with helium balance. Data collected for Xe and Kr gas analytes revealed that agreement of 6–20% with the actual concentration can be expected for various experimental conditions. To demonstrate the method using a relevant “unknown” gas mixture, experiments were performed for continuous 4 and 7 hour periods using a Hg-containing sample gas that was co-introduced into the GC sample loop with the xenon gas standard. System performance and detector response to the dilute concentration of the internal standard were pre-determined, which allowed semi-quantitative evaluation of the analyte. The calculated analyte concentrations varied during the course of the 4 hour experiment, particularly during the first hour of the analysis where the actual Hg concentration was under predicted by up to 72%. Calculated concentration improved to within 30–60% for data collected after the first hour of the experiment. Similar results were seen during the 7 hour test with the deviation from the actual concentration being 11–81% during the first hour and then decreasing for the remaining period. The method detection limit (MDL) was determined for the mercury by injecting the sample gas into the system following a period of equilibration. The MDL for Hg was calculated as 6.8 μg · m-3. This work describes the first complete GC–ICP-MS method to directly analyze gas phase samples, and detailed sample calculations and comparisons to conventional ICP-MS methods are provided.

Research Organization:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research
Sponsoring Organization:
USDOE Office of Fossil Energy (FE)
OSTI ID:
1129916
Report Number(s):
A-NETL-PUB-025
Journal Information:
Spectrochimica Acta. Part B, Atomic Spectroscopy, Vol. 85; ISSN 0584-8547
Country of Publication:
United States
Language:
English