skip to main content

SciTech ConnectSciTech Connect

Title: Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy

One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [3] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Florida State Univ., Tallahassee, FL (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harbin Inst. of Technology (China)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN ‎1530-6984; 47296; KC0208010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nano Letters, 14(3):1293-1299; Journal Volume: 14; Journal Issue: 3
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
25 ENERGY STORAGE TEM; STEM; Li-ion battery; Environmental Molecular Sciences Laboratory