skip to main content

SciTech ConnectSciTech Connect

Title: Live Cell Chemical Profiling of Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium

Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing ~5-10 fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium, Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 seconds after nutrient perturbation, and oscillations in reduction and oxidation for 60 minutes following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins, in addition to validating those previously identified in vitro.
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
47293; KP1601010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: ACS Chemical Biology, 9(1):291-300
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory