skip to main content

SciTech ConnectSciTech Connect

Title: Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments

A multi-rate expression for uranyl [U(VI)] surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorption/desorption in heterogeneous subsurface sediments. An important assumption in the rate expression is that its rate constants follow a certain type probability distribution. In this paper, a Bayes-based, Differential Evolution Markov Chain method was used to assess the distribution assumption and to analyze parameter and model structure uncertainties. U(VI) desorption from a contaminated sediment at the US Hanford 300 Area, Washington was used as an example for detail analysis. The results indicated that: 1) the rate constants in the multi-rate expression contain uneven uncertainties with slower rate constants having relative larger uncertainties; 2) the lognormal distribution is an effective assumption for the rate constants in the multi-rate model to simualte U(VI) desorption; 3) however, long-term prediction and its uncertainty may be significantly biased by the lognormal assumption for the smaller rate constants; and 4) both parameter and model structure uncertainties can affect the extrapolation of the multi-rate model with a larger uncertainty from the model structure. The results provide important insights into the factors contributing to the uncertainties of the multi-rate expression commonly used to describe the diffusion or mixing-limited sorption/desorption of both organicmore » and inorganic contaminants in subsurface sediments.« less
; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
42319; KP1702030
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Contaminant Hydrology, 156:1-15
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Markov Chain, uncertainty, multi-rate model, uranium, sorption, desorption; Environmental Molecular Sciences Laboratory