skip to main content

SciTech ConnectSciTech Connect

Title: Probing the evolution and morphology of hard carbon spheres

Monodispersed hard carbon spheres can be synthesized quickly and reproducibly by autogenic reactions of hydrocarbon precursors, notably polyethylene (including plastic waste), at high temperature and pressure. The carbon microparticles formed by this reaction have a unique spherical architecture, with a dominant internal nanometer layered motif, and they exhibit diamond-like hardness and electrochemical properties similar to graphite. In the present study, in-situ monitoring by X-ray diffraction along with electron microscopy, Raman spectroscopy, neutron pair-distribution function analysis, and computational modeling has been used to elucidate the morphology and evolution of the carbon spheres that form from the autogenic reaction of polyethylene at high temperature and pressure. A mechanism is proposed on how polyethylene evolves from a linear chain-based material to a layered carbon motif. Heating the spheres to 2400-2800 °C under inert conditions increases their graphitic character, particularly at the surface, which enhances their electrochemical and tribological properties.
; ; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Carbon, 68:104-111
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory