skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Removal of mercury from stack gases by activated carbon

Conference ·
OSTI ID:111482
 [1]
  1. Univ. of Pittsburgh, PA (United States)

On combustion, the trace elements in the incinerator feed stream are partitioned between the bottom ash (slag) stream, and a flue gas stream containing suspended fly ash and vapors of volatile elements or compounds. A further partitioning of the flue gas stream takes place in the particulate emission control devices that efficiently remove larger fly ash particles but are less efficient for vapors and finer particles. Environmental control agencies, researchers, and general public have become increasingly concerned with the mobilization of trace elements to the environment from solid and hazardous waste incinerators. Mercury is the trace element of particular concern since, during combustion, most of the mercury present in the influent stream is transferred into the vapor phase due to its high volatility. There is a considerable evidence in the literature that currently used pollution abatement technologies (flue gas clean-up and particulate control devices) are not capable of controlling gas phase mercury emissions. Activated carbon adsorption is a unit process that offers great promise for achieving high quality air emissions with respect to mercury and other trace elements that might be present in gases emitted from solid and hazardous waste incinerators. This study is designed to evaluate the rate of vapor-phase mercury removal by virgin and sulfur impregnated activated carbons under various process conditions. The specific process conditions that will be evaluated for their effect on the rate and mechanism of mercury uptake include temperature, moisture content, oxygen partial pressure, and presence of other compounds and trace elements in the vapor-phase. Accurate description of the kinetics of mercury removal by activated carbon is an essential component in establishing design procedures that would ensure successful application of this efficient technology for mercury control.

OSTI ID:
111482
Report Number(s):
CONF-9504110-; TRN: 95:005009-0024
Resource Relation:
Conference: 21. Environmental Protection Agency (EPA) annual Risk Reduction Engineering Laboratory research symposium, Cincinnati, OH (United States), 4-6 Apr 1995; Other Information: PBD: 1995; Related Information: Is Part Of 21st Annual RREL research symposium: Abstract proceedings; PB: 398 p.
Country of Publication:
United States
Language:
English