skip to main content

SciTech ConnectSciTech Connect

Title: Nanostructures of Boron, Carbon and Magnesium Diboride for High Temperature Superconductivity

Direct fabrication of MgxBy nanostructures is achieved by employing metal (Ni,Mg) incorporated MCM-41 in the Hybrid Physical-Chemical Vapor Deposition (HPCVD) reaction. Different reaction conditions are tested to optimize the fabrication process. TEM analysis shows the fabrication of MgxBy nanostructures starting at the reaction temperature of 600oC, with the yield of the nanostructures increasing with increasing reaction temperature. The as-synthesized MgxBy nanostructures have the diameters in the range of 3-5nm, which do not increase with the reaction temperature consistent with templated synthesis. EELS analysis of the template removed nanostructures confirms the existence of B and Mg with possible contamination of Si and O. NEXAFS and Raman spectroscopy analysis suggested a concentric layer-by-layer MgxBy nanowire/nanotube growth model for our as-synthesized nanostructures. Ni k-edge XAS indicates that the formation of MgNi alloy particles is important for the Vapor-Liquid-Solid (VLS) growth of MgxBy nanostructures with fine diameters, and the presence of Mg vapor not just Mg in the catalyst is crucial for the formation of Ni-Mg clusters. Physical templating by the MCM-41 pores was shown to confine the diameter of the nanostructures. DC magnetization measurements indicate possible superconductive behaviors in the as-synthesized samples.
 [1] ;  [1] ;  [1] ;  [1]
  1. Yale Univ., New Haven, CT (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Yale University, New Haven, CT (United States)
Sponsoring Org:
Country of Publication:
United States