skip to main content

SciTech ConnectSciTech Connect

Title: DFT+U Study on the Localized Electronic States and Their Potential Role During H2O Dissociation and CO Oxidation Processes on CeO2(111) Surface

We present the results of an extensive density functional theory based electronic structure study of the role of 4f-state localized electron states in the surface chemistry of a partially reduced CeO2(111) surface. These electrons exist as polaronic states, residing of Ce3+ sites, which can be created by either the formation of oxygen vacancies, OV, or other surface defects. Via ab initio molecular dynamics these localized electrons are found to be able to move freely within the upper surface layer but penetration into the bulk is prohibited as a result of the higher elastic strain induced by creating a subsurface Ce3+ defect. We found that water molecules can be easily dissociated into two surface bound hydroxyls at the Ce4+ site associated with OV sites and the dissociation process does not significantly affect the electronic structure of the reduced surface. In the presence of water, a proton-mediated Mars-van Krevelen mechanism for CO oxidation via the formation of bicarbonate species is identified. Overall we find that surface hydroxyls formed via water dissociation at CeO2 surface lead to inhabitation of the CO oxidation reaction. This is consistent with the experimental observation of requisite elevated temperatures, on the order of 600K, for this reaction tomore » occur. Part of this work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle. J. Li and Y.-G. Wang were also financially supported by NKBRSF (2011CB932400) and NSFC (91026003, 21101098) of China. Y.-G. Wang acknowledges the fellowship from China Scholarship Council and the PNNL-ASF fellowship program. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.« less
; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
39947; KC0302010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry C, 117(44):23082-23089
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory