skip to main content

SciTech ConnectSciTech Connect

Title: Spatial and temporal variations of new particle formation in East Asia using an NPF-explicit WRF-chem model: North-south contrast in new particle formation frequency

The new particle formation (NPF)-explicit version of the WRF-chem model, which we developed recently, can calculate the growth and sink of nucleated clusters explicitly with 20 aerosol size bins from 1 nm to 10 μm. In this study, the model is used to understand spatial and temporal variations of the frequency of NPF events and the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) within the boundary layer in East Asia in spring 2009. Model simulations show distinct north-south contrast in the frequency and mechanism of NPF in East Asia. NPF mostly occurred over limited periods and regions between 30° and 45°N, such as northeast China, Korea, and Japan, including regions around active volcanoes (Miyakejima and Sakurajima). At these latitudes, NPF was considerably suppressed by high concentrations of preexisting particles under stagnant air conditions associated with high-pressure systems, while nucleation occurred more extensively on most days during the simulation period. Conversely, neither nucleation nor NPF occurred frequently south of 30°N because of lower SO2 emissions and H2SO4 concentrations. The period-averaged NPF frequency was 3 times higher at latitudes of 30° - 45°N than at latitudes of 20° - 30°N. The north-south contrast of NPF frequency is validatedmore » by surface measurements in outflow regions in East Asia. The period- and domain-averaged contribution of secondary particles is estimated to be 44% for CN (> 10 nm) and 26% for CCN at a supersaturation of 1.0% in our simulation, though the contribution is highly sensitive to the magnitudes and size distributions of primary aerosol emissions and the coefficients in the nucleation parameterizations.« less
; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Geophysical Research. D. (Atmospheres), 118(20):11647-11663
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States