skip to main content

SciTech ConnectSciTech Connect

Title: Application of Low Dose Radiation Adaptive Response to Control Aging-Related Disease

Oxidative damage has been implicated in the pathogenesis of most aging-related diseases including neurodegenerative diseases. Antioxidant supplementation has been found to be ineffective in reducing such diseases, but increased endogenous production of antioxidants from the adaptive response due to physical and cognitive exercises (which increase oxidative metabolism and oxidative stress) has been effective in reducing some of the diseases. Low dose radiation (LDR), which increases oxidative stress and results in adaptive response of increased antioxidants, may provide an alternative method of controlling the aging-related diseases. We have studied the effect of LDR on the induction of adaptive response in rat brains and the effectiveness of the LDR in reducing the oxidative damage caused by subsequent high dose radiation. We have also investigated the effect of LDR on apomorphine-induced rotations in the 6-hydroxydopamine (6-OHDA) unilaterally-lesioned rat model of Parkinson?s disease (PD). LDR was observed to initiate an adaptive response in the brain, and reduce the oxidative damage from subsequent high dose radiation exposure, confirming the effectiveness of LDR adaptive response in reducing the oxidative damage from the free radicals due to high dose radiation. LDR resulted in a slight improvement in Tyrosine hydroxylase expression on the lesioned side of substantia nigramore » (indicative of its protective effect on the dopaminergic neurons), and reduced the behavioral symptoms in the 6-OHDA rat model of PD. Translation of this concept to humans, if found to be applicable, may be a possible approach for controlling the progression of PD and other neurodegenerative diseases. Since any translation of the concept to humans would be hindered by the currently prevalent carcinogenic concerns regarding LDR based on the linear no-threshold (LNT) model, we have also studied the justifications for the use of the LNT model. One of the shortcomings of the LNT model is that it ignores the effects of any adaptive response of the body to the LDR. The importance of considering adaptive response becomes obvious when one considers the sharp contrast between (i) the failure of well-designed anti-angiogenesis therapies which resulted in aggressive tumors because of ignoring adaptive response and (ii) the occasional cure of untreated metastatic lesions likely due to the incidental adaptive response from the LDR exposure to parts of the body during radiation therapy of a primary tumor, known as the abscopal effect. Another shortcoming of the LNT model is that it pays exclusive attention to increase in mutations, which is not a decisive factor in the occurrence of clinical cancers, as the cause of excess cancers. On the other hand, LNT model ignores the immune system response, which plays a very important role in preventing occult cancers from becoming clinical cancers, as demonstrated by the large increase in cancers in organ transplant patients whose immune system is suppressed. There is also recent epidemiological evidence against the LNT model. A re-analysis of the latest update to the atomic bomb survivor data has shown that the data no longer support the LNT model but are consistent with the radiation hormesis hypothesis. A re-analysis of cancer incidence data of Taiwanese apartment dwellers that were exposed to LDR from contaminated building materials has also shown a reduction in cancers from the LDR. The present LDR carcinogenic concerns would preclude any human study of cancer prevention using LDR, since the study would require subjecting a large asymptomatic population to LDR. However, pilot studies of radiation hormesis in cancer patients may be more acceptable since these would require irradiation of limited numbers of patients in order to assess the effectiveness of the LDR treatments. Some of the LDR applications that may be considered for cancer patients are: LDR treatment of early stage cancers without the adverse side effects of current treatments such as radiation therapy or chemotherapy, adjuvant LDR treatment of cancer patients undergoing radiation therapy for better tumor control and reduced metastasis, and the use of LDR treatment following radiation therapy to reduce the risk of second cancers from the radiation therapy. Studies of LDR for the control of early-stage neurodegenerative diseases may also be more acceptable since currently there are no effective treatments available for controlling these diseases, and since such studies would require LDR exposure to limited parts of the brain, and the carcinogenic risk from such treatments would be very small due to the low radiation tissue-weighting factor for the brain. Success in these studies can lead to the study of LDR for preventing and controlling other aging-related diseases.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Fox Chase Cancer Center, Philadelphia, PA
Sponsoring Org:
Country of Publication:
United States
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT. Low dose radiation; Adaptive response; aging-related diseases; Parkinson?s disease; neurodegenerative diseases; radiation hormesis; LNT model; cancer prevention; radiation therapy