skip to main content

SciTech ConnectSciTech Connect

Title: Saint Joseph's University Institute for Environmental Stewardship

Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. At the field site we planted switchgrass collected from regions in Kansas, Oklahoma, and Texas. After a year of establishment we implemented a set of two-year water treatments that examined the responses in physiology, growth and development of switchgrass to predicted changes in precipitation amount for the central United States. After this experiment was completed we performed a second set of experiments that examined the responses of switchgrass physiology, growth, and development to changes in precipitation frequency. We also included in this analysis how genome size of individuals influenced their responses to precipitation frequency changes. Generally, we found switchgrass to be unresponsive to realistic predictions of precipitation changes for the Central Plains of the United States. These studies have provided significant insight into how this important grassland species will respond to future climate change from both anmore » ecological and applied biological perspective. Finally, we provided insight into the mechanism through which this species changes in the face of altered water availability by not supporting the hypothesis that the control of switchgrass responses to changes in precipitation is altered by genome size. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site ( in the near future.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Saint Joseph's University, Philadelphia, PA
Sponsoring Org:
USDOE; USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States