skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report: Stability of U (VII) and Tc (VII) Reducing Microbial Communities To Environmental Perturbation

Technical Report ·
DOI:https://doi.org/10.2172/1095288· OSTI ID:1095288

'Bioimmobilization' of redox-sensitive metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In this approach, growth-limiting substrates are added to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated precipitation ('bioimmobilization') of targeted contaminants. This project investigated a fundamentally new approach for modeling this process that couples thermodynamic descriptions for microbial growth with associated geochemical reactions. In this approach, a synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict the effect of added substrates on microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field bioimmobilization experiments at two geochemically diverse research sites. Predicted effects of ethanol or acetate addition on uranium and technetium solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one field site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of uranium and technetium via reductive precipitation, the modeling approach is potentially useful for exploring the coupling of microbial growth and geochemical reactions in a variety of basic and applied biotechnology research settings.

Research Organization:
Oregon State Univ., Corvallis, OR (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
FG02-05ER63986
OSTI ID:
1095288
Report Number(s):
F1
Country of Publication:
United States
Language:
English