skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MODERN THEORIES OF CARBON-BASED ELECTROCHEMICAL CAPACITORS: A SHORT REVIEW

Book ·
OSTI ID:1089756

Theoretical models for electrochemical capacitors range from the original Helmholtz model and mean-field continuum models, to the surface curvature-based post-Helmholtz models, and to modern atomistic simulations. Here, we review current theoretical models that have been useful at shedding light on experimental findings but also provide predictive capabilities that are needed to achieve the optimization of supercapacitors. Due to the non-planar surface of materials at the nanoscale, the original Helmholtz model is gradually found to be outdated, in particular for carbon materials. We show that the surface curvature-based models provide a better description of the interfacial behavior of carbon materials.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences (NCCS)
Sponsoring Organization:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1089756
Country of Publication:
United States
Language:
English