skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating

Journal Article · · Journal of Materials Science

The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe PbS-based TE material (Pb 0.95 Sn 0.05 Te) 0.92(PbS) 0.08 0.055 % PbI 2 over the temperature ranges of 293 543 and 293 773 K, a CTE, alpha avg , of 21.4 0.3 x 10-6 K-1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures [603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a pos- sible mechanism for inhibiting bloating in powder processed specimens.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1087043
Journal Information:
Journal of Materials Science, Vol. 48, Issue 18; ISSN 0022--2461
Country of Publication:
United States
Language:
English