skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact

Journal Article · · Journal of Geophysical Research. D. (Atmospheres), 118(5):2304-2326
DOI:https://doi.org/10.1029/2012JD018446· OSTI ID:1084175

: A new two-dimensional aerosol bin scheme, which resolves both aerosol size and black carbon (BC) mixing state for BC aging processes (e.g., condensation and coagulation), has been developed and implemented into the WRF-chem model (MS-resolved WRF-chem). The mixing state of BC simulated by this model is compared with direct measurements over the East Asian region in spring 2009. Model simulations generally reproduce the observed features of the BC mixing state, such as the size-dependent number fractions of BC-containing and BC-free particles and the coating thickness of BC-containing particles. Sensitivity simulations show that the condensation process is dominant for the growth of thinly coated BC particles, while the coagulation process is necessary to produce thickly coated BC particles. Off-line optical and radiative calculations assuming an average mixing state for each size bin show that the domain- and period-averaged absorption coefficient and heating rate by aerosols are overestimated by 30 – 40% in the boundary layer compared with a benchmark simulation with the detailed treatment of mixing state. The absolute value of aerosol radiative forcing is also overestimated (10%, 3 W m-2) at the surface. However, these overestimations are reduced considerably when all the parameters (including mass and number concentration) are calculated with the simple treatment of mixing state. This is because the overestimation of radiative parameters due to higher absorption efficiency (compared with the benchmark simulation) is largely canceled by the underestimation of BC concentrations due to efficient wet removal processes. The overall errors in radiative forcing can be much smaller because of this cancellation but for the wrong reasons.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1084175
Report Number(s):
PNNL-SA-89311; KP1701000
Journal Information:
Journal of Geophysical Research. D. (Atmospheres), 118(5):2304-2326, Journal Name: Journal of Geophysical Research. D. (Atmospheres), 118(5):2304-2326
Country of Publication:
United States
Language:
English

Similar Records

Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)
Journal Article · Tue Sep 30 00:00:00 EDT 2014 · Atmospheric Chemistry and Physics, 14(18):10315-10331 · OSTI ID:1084175

A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei
Journal Article · Sat May 07 00:00:00 EDT 2016 · Journal of Geophysical Research: Atmospheres · OSTI ID:1084175

Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume
Journal Article · Sat Sep 11 00:00:00 EDT 2010 · Journal of Geophysical Research. D. (Atmospheres), 115:Article No. D17210 · OSTI ID:1084175

Related Subjects