skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ Durability and Surface Electro-catalytic Activity by La0.85Sr0.15MnO3-δ Investigated using a New Test Electrode Platform

Journal Article · · Energy & Environmental Science
DOI:https://doi.org/10.1039/c1ee01188j· OSTI ID:1065090

A carefully designed test cell platform with a new electrode structure is utilized to determine the intrinsic surface catalytic properties of an electrode. With this design, the electrocatalytic activity and stability of an La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode is enhanced by a dense thin La0.85Sr0.15MnO3±δ (LSM) coating, suggesting that an efficient electrode architecture has been demonstrated that can make effective use of desirable properties of two different materials: fast ionic and electronic transport in the backbone (LSCF) and facile surface kinetics on the thin-film coating (LSM). Theoretical analyses suggest that the enhanced electrocatalytic activity of LSM-coated LSCF is attributed possibly to surface activation under cathodic polarization due to the promotion of oxygen adsorption and/or dissociation by the surface layer and the dramatically increased oxygen vacancy population in the surface film. Further, the observed time-dependent activation over a few hundreds of hours and durability are likely associated with the formation of a favorable hybrid surface phase intermediate between LSM and LSCF. This efficient electrode architecture was successfully applied to the state-of-the-art LSCF-based cathodes by a simple solution infiltration process, achieving reduced interfacial resistance and improved stability under fuel cell operating conditions.

Research Organization:
Energy Frontier Research Centers (EFRC) (United States). Heterogeneous Functional Materials Center (HeteroFoaM)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
SC0001061
OSTI ID:
1065090
Journal Information:
Energy & Environmental Science, Vol. 4, Issue 6; Related Information: HeteroFoaM partners with University of South Carolina (lead); University of California, Santa Barbara; University of Connecticut; Georgia Institute of Technology; Princeton University; Rochester Institute of Technology; Savannah River National Laboratory; University of South Carolina; University of Utah
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English