skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli

Journal Article · · Biochem. Biophys. Res. Commun.

We report herein the functional expression of an Fe-type nitrile hydratase (NHase) without the co-expression of an activator protein or the Escherichia coli chaperone proteins GroES/EL. Soluble protein was obtained when the {alpha}- and {beta}-subunit genes of the Fe-type NHase Comamonas testosteroni Ni1 (CtNHase) were synthesized with optimized E. coli codon usage and co-expressed. As a control, the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase) was expressed with (ReNHase{sup +Act}) and without (ReNHase{sup -Act}) its activator protein, establishing that expression of a fully functional, metallated ReNHase enzyme requires the co-expression of its activator protein, similar to all other Fe-type NHase enzymes reported to date, whereas the CtNHase does not. The X-ray crystal structure of CtNHase was determined to 2.4 {angstrom} resolution revealing an {alpha}{beta} heterodimer, similar to other Fe-type NHase enzymes, except for two important differences. First, two His residues reside in the CtNHase active site that are not observed in other Fe-type NHase enzymes and second, the active site Fe(III) ion resides at the bottom of a wide solvent exposed channel. The solvent exposed active site, along with the two active site histidine residues, are hypothesized to play a role in iron incorporation in the absence of an activator protein.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
NSFOTHER
OSTI ID:
1048973
Journal Information:
Biochem. Biophys. Res. Commun., Vol. 424, Issue (3) ; 08, 2012; ISSN 0006-291X
Country of Publication:
United States
Language:
ENGLISH