skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of Transposable Elements in Laccaria bicolor

Journal Article · · PLoS ONE

Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copies elements distributed within 172 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs are ancient except some terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TEs expansion in L. bicolor; the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 500,000 years ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis represents an initial characterization of TEs in the L. bicolor genome, contributes to genome assembly and to a greater understanding of the role TEs played in genome organization and evolution, and provides a valuable resource for the ongoing Laccaria Pan-Genome project supported by the U.S.-DOE Joint Genome Institute.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1048713
Journal Information:
PLoS ONE, Vol. 7, Issue 8; ISSN 1932-6203
Country of Publication:
United States
Language:
English