skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hot electron dynamics in graphene

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1048505· OSTI ID:1048505
 [1]
  1. Iowa State Univ., Ames, IA (United States)

Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime the temperature T and electric field E are also related. In this thesis we show that the nontrivial electron distribution function can be associated with an effective temperature T which exhibits a dependence on electric field E and electron-phonon coupling g: T ∝ E1/4g(1.2) The anamolous exponent 1/4 may obtained from scaling. Meanwhile, yet we cannot obtain the distribution function, however, argument based on scaling gives us the current dependence on electric field: J ∝√Eg2 (1.3) which is a very different result compared with the results in which electrons do not experience scattering. This result provides us with important insighht into the correct nonequilibrium distribution function because now we know what the electric field dependence of current must be. Due to the applied field, the electronic system produces heat which prevents us from reaching a steady state. In order to remove Joule heat, we imagine that we have a graphene flake attached to a semiconductor substrate. Joule heat either transport to its environment or to the substrate as shown in 1.1. The red lines represent heat current flowing from high temperature sample to the low temperature reservoir. However, for a very large system, the temperature gradient is 0 in the plane so heat cannot be conducted outside in the horizontal direction, while the energy gap in semiconductor also forbids electron current from flowing into the substrate. But for phonon thermal current, the temperature gradient is large in the vertical direction, so heat can be transported into the substrate via phonons. There are two possible channels of phonon degrees of freedom, acoustic phonon and optical phonon. As we can see from Fig. 1.2 [Kusminskiy et al. (2009)], since the optical phonon excitation energy is too large for a low temperature system, it is note likely to be excited by the nonlinear electric field, so the possible way left is by electron-acoustic phonon scattering. Here acoustic phonon acts as a heat bath to absorb the Joule heat created by pair production process. Hence the scattering process is determined by electron-acoustic phonon interaction which will be introduced in section 3.3.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-07CH11358
OSTI ID:
1048505
Report Number(s):
IS-T 3030
Country of Publication:
United States
Language:
English

Similar Records

SISGR: Atom chip microscopy: A novel probe for strongly correlated materials
Technical Report · Sat May 31 00:00:00 EDT 2014 · OSTI ID:1048505

Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate
Journal Article · Sat Jun 21 00:00:00 EDT 2014 · Journal of Applied Physics · OSTI ID:1048505

Interpretation of the I-Regime and transport associated with relevant heavy particle modes
Journal Article · Sun Jan 15 00:00:00 EST 2012 · Physics of Plasmas · OSTI ID:1048505

Related Subjects