skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct Aqueous Photochemistry of Isoprene High-NOx Secondary Organic Aerosol

Journal Article · · Physical Chemistry Chemical Physics
DOI:https://doi.org/10.1039/c2cp40944e· OSTI ID:1047387

Secondary organic aerosol (SOA) generated from the high-NOx photooxidation of isoprene was dissolved in water and irradiated with {lambda} > 290 nm light to simulate direct photolytic processing of organics in atmospheric water droplets. High-resolution mass spectrometry was used to characterize the composition at four time intervals (0, 1, 2, and 4 h). Photolysis resulted in the decomposition of high molecular weight (MW) oligomers, reducing the average length of organics by 2 carbon units. Approximately 65% by count of SOA molecules decomposed during photolysis, accompanied by the formation of new products. An average of 30 % of the organic mass was modified after 4 h of direct photolysis. In contrast, only a small fraction of the mass (<2 %), belonging primarily to organic nitrates, decomposed in the absence of irradiation by hydrolysis. We observed a statistically-significant increase in average O/C, decrease in H/C, and increase in N/C ratios resulting from photolysis. Furthermore, the concentration of aromatic compounds increased significantly during photolysis. Approximately 10 % of photodegraded compounds and 50 % of the photoproducts contain nitrogen. Organic nitrates and multifunctional oligomers were identified as compounds degraded by photolysis. Low-MW 0N (compounds with 0 nitrogen atoms in their structure) and 2N compounds were the dominant photoproducts. Fragmentation experiments using tandem mass spectrometry (MSn, n = 2-3) indicate that the 2N products are likely heterocyclic/aromatic and are tentatively identified as furoxans. Although the exact mechanism is unclear, these 2N heterocyclic compounds are produced by reactions between photochemically-formed aqueous NOx species and SOA organics.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1047387
Report Number(s):
PNNL-SA-89184; KP1704020; TRN: US201216%%246
Journal Information:
Physical Chemistry Chemical Physics, Vol. 14, Issue 27; ISSN 1463-9076
Country of Publication:
United States
Language:
English