skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiation Hard Silicon for Medical, Space and High Energy Physics Applications

Journal Article · · Materials Science Forum

The objective of this paper is to give an overview on how silicon particle detector would survive operational in extremely harsh radiation environment after luminosity upgrade of the CERN LHC (Large Hadron Collider). The Super-LHC would result in an integrated fluence 1 x 10{sup 16} p/cm{sup 2} and that is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies. The Czochralski silicon (Cz-Si) has intrinsically high oxygen concentration. Therefore Cz-Si is considered as a promising material for the tracking systems in future very high luminosity colliders. The fabrication process issues of Cz-Si are discussed and the formation of thermal donors is especially emphasized. N{sup +}/p{sup -}/p{sup +} and p{sup +}/n{sup -}/n{sup +} detectors have been processed on magnetic Czochralski (MCz-Si) wafers. We show measurement data of AC-coupled strip detectors and single pad detectors as well as experimental results of intentional TD doping. Data of spatial homogeneity of electrical properties, full depletion voltage and leakage current, is shown and n and p-type devices are compared. Our results show that it is possible to manufacture high quality n{sup +}/p{sup -}/p{sup +} and p{sup +}/n{sup -}/n{sup +} particle detectors from high resistivity Czochralski silicon.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE SC OFFICE OF SCIENCE (SC)
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1040047
Report Number(s):
BNL-90110-2009-JA; MSFOEP; KA04; TRN: US1202296
Journal Information:
Materials Science Forum, Vol. 614; ISSN 0255-5476
Country of Publication:
United States
Language:
English