skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Cation Mediation on Asp Adsorption

Journal Article · · Langmuir
DOI:https://doi.org/10.1021/la204329d· OSTI ID:1039976
 [1];  [2];  [3];  [4];  [2]
  1. Harbin Inst. of Technology (China). Center for Precision Engineering; Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemical and Biomolecular Engineering
  2. Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemical and Biomolecular Engineering
  3. Harbin Inst. of Technology (China). Center for Precision Engineering
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division

Here the binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg2+, Ca2+, or Sr2+) or monovalent (Na+, K+, or Rb+) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na+ > K+ > Rb+ shows a “reverse” lyotropic trend, while the divalent cations on the same surface exhibit a “regular” lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr2+ > Ca2+ > Mg2+). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO group and the rutile, helping to “trap” the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO– group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC05-00OR22725; AC02-05CH11231
OSTI ID:
1039976
Journal Information:
Langmuir, Vol. 28, Issue 5; ISSN 0743-7463
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English

Similar Records

Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption
Journal Article · Sat Jan 01 00:00:00 EST 2011 · Journal of Physical Chemistry C · OSTI ID:1039976

Comparison of cation adsorption by isostructural rutile and cassiterite.
Journal Article · Sat Jan 01 00:00:00 EST 2011 · Langmuir · OSTI ID:1039976

Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF3SO3 Media to 250 °C
Journal Article · Mon Jun 01 00:00:00 EDT 2015 · Journal of Physical Chemistry. C · OSTI ID:1039976