skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110)

Journal Article · · ACS Catalysis, 2(4):468-478
DOI:https://doi.org/10.1021/cs3000039· OSTI ID:1038361

The strong Mo-O bond strength provides promising reactivity of Mo-based catalysts for the deoxygenation of biomass-derived oxygenates. Combining the novel dimer saddle point searching method with periodic spin-polarized density functional theory calculations, we investigated the reaction pathways of a acetaldehyde decomposition on the clean Mo(110) surface. Two reaction pathways were identified, a selective deoxygenation and a nonselective fragmentation pathways. We found that acetaldehyde preferentially adsorbs at the pseudo 3-fold hollow site in the η2(C,O) configuration on Mo(110). Among four possible bond (β-C-H, γ-C-H, C-O and C-C) cleavages, the initial decomposition of the adsorbed acetaldehyde produces either ethylidene via the C-O bond scission or acetyl via the β-C-H bond scission while the C-C and the γ-C-H bond cleavages of acetaldehyde leading to the formation of methyl (and formyl) and formylmethyl are unlikely. Further dehydrogenations of ethylidene into either ethylidyne or vinyl are competing and very facile with low activation barriers of 0.24 and 0.31 eV, respectively. Concurrently, the formed acetyl would deoxygenate into ethylidyne via the C-O cleavage rather than breaking the C-C or the C-H bonds. The selective deoxygenation of acetaldehyde forming ethylene is inhibited by relatively weaker hydrogenation capability of the Mo(110) surface. Instead, the nonselective pathway via vinyl and vinylidene dehydrogenations to ethynyl as the final hydrocarbon fragment is kinetically favorable. On the other hand, the strong interaction between ethylene and the Mo(110) surface also leads to ethylene decomposition instead of desorption into the gas phase. This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and supported by the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1038361
Report Number(s):
PNNL-SA-84733; 42292; BM0101010; TRN: US1201841
Journal Information:
ACS Catalysis, 2(4):468-478, Vol. 2, Issue 4
Country of Publication:
United States
Language:
English