skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure-induced polymerization in substituted acetylenes

Conference ·
DOI:https://doi.org/10.1063/1.3686548· OSTI ID:1038265

A fundamental understanding of shock-induced chemical reactions in organics is still lacking and there are limited studies devoted to determining reaction mechanisms, evolution of bonding, and effect of functional group substitutions. The fast timescale of reactions occurring during shock compression create significant experimental challenges (diagnostics) to fully quantify the mechanisms involved. Static compression combined with temperature provides a complementary route to investigate the equilibrium phase space and metastable intermediates under extreme P-T conditions. In this study, we present our results from our ongoing high pressure in situ synchrotron x-ray diffraction experiments on substituted acetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C=CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-SiC=CH]. We observed that the onset pressure of chemical reactions (at room temperature) in these compounds is higher under static compression (TBA: 12 GPa and ETMS: 17.6 GPa) when compared to shock input pressures (TBA: 6.1 GPa and ETMS: 6.6 GPa). At elevated temperatures, reactivity was observed to occur at pressures comparable to shock conditions. The products were polymeric in nature, recovered to ambient conditions with little degradation.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
OTHER
OSTI ID:
1038265
Resource Relation:
Conference: 2011 Shock Compression of Condensed Matter;June 26 - July 1, 2011;Chicago, IL
Country of Publication:
United States
Language:
ENGLISH