skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Surface Sampling and Chemical Imaging using Proximal Probe Thermal Desorption/Secondary Ionization Mass Spectrometry

Journal Article · · Analytical Chemistry
DOI:https://doi.org/10.1021/ac102766w· OSTI ID:1038067

Proximal probe thermal desorption/secondary ionization mass spectrometry was studied and applied to molecular surface sampling and chemical imaging using printed patterns on photopaper as test substrates. With the use of a circular cross section proximal probe with a tip diameter of 50 m and fixed temperature (350 C), the influence of probe-to-surface distance, lane scan spacing, and surface scan speed on signal quality and spatial resolution were studied and optimized. As a compromise between signal amplitude, signal reproducibility, and data acquisition time, a surface scan speed of 100 m/s, probe-to-paper surface distance of 5 m, and lane spacing of 10 m were used for imaging. Under those conditions the proximal probe thermal desorption/secondary ionization mass spectrometry method was able to achieve a spatial resolution of about 50 m as determined by the ability to distinguish surface patterns of known dimensions that were printed on the paper substrate. It is expected that spatial resolution and chemical image quality could be further improved by using probes of smaller cross section size and by incorporating a means to maintain a fixed optimal probe-to-surface distance real time, continuously adapting to the changing topography of the surface during a lane scan.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1038067
Journal Information:
Analytical Chemistry, Vol. 83, Issue 2; ISSN 0003-2700
Country of Publication:
United States
Language:
English